If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+22x+109=0
a = 1; b = 22; c = +109;
Δ = b2-4ac
Δ = 222-4·1·109
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-4\sqrt{3}}{2*1}=\frac{-22-4\sqrt{3}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+4\sqrt{3}}{2*1}=\frac{-22+4\sqrt{3}}{2} $
| -3=(-1/4)x+(1/4) | | 9x2+12x-32=0 | | -x/4-5=-1 | | 15/z=6/8 | | 12x-6x+4=3x-1 | | 13=1/4x+8 | | y3=118 | | 2x=-9x-1 | | 60x+29x+1+90=180 | | 10x+5=-6x-35 | | 11.9x=13.6 | | Y=-3x+3/4 | | 160+0.15x=280 | | -16-16z=-8+6z | | 77=x/4 | | 3x+5−4x=−(x+8 | | 5x+4+3x= | | 2x+6(5)=14 | | X=y+5/2 | | 4(n+6)=4n+8(n+13( | | 17x3+(3x+8x3)= | | 6x-20+26=4x+56 | | (180.00+0.15m)=309.00 | | 10x-2(4x+3+1=2x+7-2x | | 5(6x+2)=30x-3 | | 10x-2(4x+3+1=2x | | -6x+12-3x=51 | | -4/4-3z=-2/4+4z | | g3=1663/8 | | −2(4x+4)=112 | | 77=6t+5+ | | 8k+7=151 |